The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of RP

Ruth Pöttgen

Senior Lecturer

Portrait of RP

Measurement of soft-drop jet observables in pp collisions with the ATLAS detector at s =13 TeV

Author

  • Aad G.
  • T. Åkesson
  • S. Bocchetta
  • L. Bryngemark
  • E. Corrigan
  • C. Doglioni
  • K. Gregersen
  • E. Hansen
  • V. Hedberg
  • G. Jarlskog
  • C. Kalderon
  • E. Kellermann
  • B. Konya
  • E. Lytken
  • K. Mankinen
  • C. Marcon
  • J. Mjörnmark
  • G. Mullier
  • R. Poettgen
  • T. Poulsen
  • E. Skorda
  • O. Smirnova
  • Zwalinski L.

Summary, in English

Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb-1 of pp collisions collected with the ATLAS detector at s=13 TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant αS. Other observables, such as the momentum sharing between the two subjets, are nearly independent of αS. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal nonperturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space. © 2020 CERN.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2020

Language

English

Publication/Series

Physical Review D

Volume

101

Issue

5

Document type

Journal article

Publisher

American Physical Society

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 2470-0010