The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Oxana Smirnova

Oxana Smirnova

Senior Lecturer, Deputy Head of division

Oxana Smirnova

Search for direct top squark pair production in final states with two leptons in √s=13 TeV pp collisions with the ATLAS detector

Author

  • M Aaboud
  • G Aad
  • B. Abbott
  • O Abdinov
  • B Abeloos
  • S. H. Abidi
  • Torsten Åkesson
  • Simona Bocchetta
  • Caterina Doglioni
  • Vincent Hedberg
  • Göran Jarlskog
  • Charles Kalderon
  • Edgar Kellermann
  • Else Lytken
  • Katja Mankinen
  • Ulf Mjörnmark
  • Ruth Pöttgen
  • Trine Poulsen
  • Oxana Smirnova
  • Oleksandr Viazlo

Summary, in English

The results of a search for direct pair production of top squarks in events with two opposite-charge leptons (electrons or muons) are reported, using 36.1fb-1 of integrated luminosity from proton–proton collisions at s=13 TeV collected by the ATLAS detector at the Large Hadron Collider. To cover a range of mass differences between the top squark t~ and lighter supersymmetric particles, four possible decay modes of the top squark are targeted with dedicated selections: the decay t~→bχ~1± into a b-quark and the lightest chargino with χ~1±→Wχ~10, the decay t~→tχ~10 into an on-shell top quark and the lightest neutralino, the three-body decay t~→bWχ~10 and the four-body decay t~→b10. No significant excess of events is observed above the Standard Model background for any selection, and limits on top squarks are set as a function of the t~ and χ~10 masses. The results exclude at 95% confidence level t~ masses up to about 720 GeV, extending the exclusion region of supersymmetric parameter space covered by previous searches. © 2017, CERN for the benefit of the ATLAS collaboration.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2017

Language

English

Publication/Series

European Physical Journal C

Volume

77

Issue

12

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1434-6044