The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Oxana Smirnova

Oxana Smirnova

Senior Lecturer, Deputy Head of division

Oxana Smirnova

Search for heavy resonances decaying to a W or Z boson and a Higgs boson in the qq¯(′)bb¯ final state in pp collisions at s=13 TeV with the ATLAS detector

Author

  • M Aaboud
  • G Aad
  • B. Abbott
  • O Abdinov
  • B Abeloos
  • S. H. Abidi
  • Torsten Åkesson
  • Simona Bocchetta
  • Caterina Doglioni
  • Vincent Hedberg
  • Göran Jarlskog
  • Charles Kalderon
  • Else Lytken
  • Katja Mankinen
  • Ulf Mjörnmark
  • Trine Poulsen
  • Oxana Smirnova
  • Oleksandr Viazlo

Summary, in English

A search for heavy resonances decaying to a W or Z boson and a Higgs boson in the qq¯(′)bb¯ final state is described. The search uses 36.1 fb−1 of proton–proton collision data at s=13 TeV collected by the ATLAS detector at the CERN Large Hadron Collider in 2015 and 2016. The data are in agreement with the Standard Model expectations, with the largest excess found at a resonance mass of 3.0 TeV with a local (global) significance of 3.3 (2.1) σ. The results are presented in terms of constraints on a simplified model with a heavy vector triplet. Upper limits are set on the production cross-section times branching ratio for resonances decaying to a W (Z) boson and a Higgs boson, itself decaying to bb¯, in the mass range between 1.1 and 3.8 TeV at 95% confidence level; the limits range between 83 and 1.6 fb (77 and 1.1 fb) at 95% confidence level. © 2017 The Author

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2017

Language

English

Pages

494-515

Publication/Series

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

Volume

774

Document type

Journal article

Publisher

Elsevier

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0370-2693