The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Oxana Smirnova

Oxana Smirnova

Senior Lecturer, Deputy Head of division

Oxana Smirnova

Search for new phenomena in dijet events using 37 fb-1 of pp collision data collected at s =13 TeV with the ATLAS detector

Author

  • M Aaboud
  • G Aad
  • B. Abbott
  • J Abdallah
  • O Abdinov
  • B Abeloos
  • Torsten Åkesson
  • Simona Bocchetta
  • Caterina Doglioni
  • Vincent Hedberg
  • Göran Jarlskog
  • Charles Kalderon
  • Else Lytken
  • Ulf Mjörnmark
  • Trine Poulsen
  • Oxana Smirnova
  • Oleksandr Viazlo

Summary, in English

Dijet events are studied in the proton-proton collision data set recorded at s=13 TeV with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to integrated luminosities of 3.5 fb-1 and 33.5 fb-1 respectively. Invariant mass and angular distributions are compared to background predictions and no significant deviation is observed. For resonance searches, a new method for fitting the background component of the invariant mass distribution is employed. The data set is then used to set upper limits at a 95% confidence level on a range of new physics scenarios. Excited quarks with masses below 6.0 TeV are excluded, and limits are set on quantum black holes, heavy W′ bosons, W∗ bosons, and a range of masses and couplings in a Z′ dark matter mediator model. Model-independent limits on signals with a Gaussian shape are also set, using a new approach allowing factorization of physics and detector effects. From the angular distributions, a scale of new physics in contact interaction models is excluded for scenarios with either constructive or destructive interference. These results represent a substantial improvement over those obtained previously with lower integrated luminosity. © 2017 CERN.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2017

Language

English

Publication/Series

Physical Review D

Volume

96

Issue

5

Document type

Journal article

Publisher

American Physical Society

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1550-2368