The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Oxana Smirnova

Oxana Smirnova

Senior Lecturer, Deputy Head of division

Oxana Smirnova

Observation of photon-induced W+W− production in pp collisions at s=13 TeV using the ATLAS detector

Author

  • G. Aad
  • T.P.A. Åkesson
  • S.S. Bocchetta
  • E.E. Corrigan
  • C. Doglioni
  • J. Geisen
  • K. Gregersen
  • E. Hansen
  • V. Hedberg
  • G. Jarlskog
  • E. Kellermann
  • B. Konya
  • E. Lytken
  • K.H. Mankinen
  • C. Marcon
  • J.U. Mjörnmark
  • G.A. Mullier
  • R. Poettgen
  • T. Poulsen
  • E. Skorda
  • O. Smirnova
  • L. Zwalinski

Summary, in English

This letter reports the observation of photon-induced production of W-boson pairs, γγ→WW. The analysis uses 139 fb−1 of LHC proton–proton collision data taken at s=13 TeV recorded by the ATLAS experiment during the years 2015–2018. The measurement is performed selecting one electron and one muon, corresponding to the decay of the diboson system as WW→e±νμ∓ν final state. The background-only hypothesis is rejected with a significance of well above 5 standard deviations consistent with the expectation from Monte Carlo simulation. A cross section for the γγ→WW process of 3.13±0.31(stat.)±0.28(syst.) fb is measured in a fiducial volume close to the acceptance of the detector, by requiring an electron and a muon of opposite signs with large dilepton transverse momentum and exactly zero additional charged particles. This is found to be in agreement with the Standard Model prediction. © 2021 The Author(s)

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2021

Language

English

Publication/Series

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

Volume

816

Document type

Journal article

Publisher

Elsevier

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0370-2693