The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Martin Ljunggren

Default user image.

Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at energies available at the CERN Large Hadron Collider

Author

  • J. Adam
  • Peter Christiansen
  • Martin Ljunggren
  • Anders Oskarsson
  • Tuva Richert
  • David Silvermyr
  • Carsten Sogaard
  • Evert Stenlund
  • Vytautas Vislavicius
  • M. Zyzak

Summary, in English

The production of (anti-)deuteron and (anti-)He3 nuclei in Pb-Pb collisions at sNN=2.76 TeV has been studied using the ALICE detector at the LHC. The spectra exhibit a significant hardening with increasing centrality. Combined blast-wave fits of several particles support the interpretation that this behavior is caused by an increase of radial flow. The integrated particle yields are discussed in the context of coalescence and thermal-statistical model expectations. The particle ratios, He3/d and He3/p, in Pb-Pb collisions are found to be in agreement with a common chemical freeze-out temperature of Tchem≈156 MeV. These ratios do not vary with centrality which is in agreement with the thermal-statistical model. In a coalescence approach, it excludes models in which nucleus production is proportional to the particle multiplicity and favors those in which it is proportional to the particle density instead. In addition, the observation of 31 anti-tritons in Pb-Pb collisions is reported. For comparison, the deuteron spectrum in pp collisions at s=7 TeV is also presented. While the p/π ratio is similar in pp and Pb-Pb collisions, the d/p ratio in pp collisions is found to be lower by a factor of 2.2 than in Pb-Pb collisions. © 2016 CERN.

Department/s

  • eSSENCE: The e-Science Collaboration
  • Particle and nuclear physics

Publishing year

2016

Language

English

Publication/Series

Physical Review C

Volume

93

Issue

2

Document type

Journal article

Publisher

American Physical Society

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 2469-9985