Kaare Iversen
Doctoral student
Investigating the composition of the K0⁎(700) state with π±KS0 correlations at the LHC
Author
Summary, in English
The first measurements of femtoscopic correlations with the particle pair combinations π±KS0 in pp collisions at s=13 TeV at the Large Hadron Collider (LHC) are reported by the ALICE experiment. Using the femtoscopic approach, it is shown that it is possible to study the elusive K0⁎(700) particle that has been considered a tetraquark candidate for over forty years. Source and final-state interaction parameters are extracted by fitting a model assuming a Gaussian source to the experimentally measured two-particle correlation functions. The final-state interaction in the π±KS0 system is modeled through a resonant scattering amplitude, defined in terms of a mass and a coupling parameter, The extracted mass and Breit–Wigner width, derived from the coupling parameter, of the final-state interaction are found to be consistent with previous measurements of the K0⁎(700). The small value and increase of the correlation strength with increasing source size support the hypothesis that the K0⁎(700) is a four-quark state, i.e. a tetraquark state of the form (q1,q2‾,q3,q3‾) in which q1, q2 and q3 indicate the flavor of the valence quarks of the π and KS0. This latter trend is also confirmed via a simple geometric model that assumes a tetraquark structure of the K0⁎(700) resonance. © 2024 The Author(s)
Department/s
- Particle and nuclear physics
Publishing year
2024
Language
English
Publication/Series
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
Volume
856
Document type
Journal article
Publisher
Elsevier
Topic
- Subatomic Physics
Status
Published
ISBN/ISSN/Other
- ISSN: 0370-2693