The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Kaare Endrup Iversen

Kaare Iversen

Doctoral student

Kaare Endrup Iversen

Measurement of (anti)alpha production in central Pb–Pb collisions at sNN=5.02 TeV

Author

  • S. Acharya
  • S. Basu
  • P. Christiansen
  • J. Hansen
  • K.E. Iversen
  • O. Matonoha
  • R. Nepeivoda
  • A. Ohlson
  • D. Silvermyr
  • J. Staa
  • V. Vislavicius
  • N. Zurlo

Summary, in English

In this letter, measurements of (anti)alpha production in central (0–10%) Pb–Pb collisions at a center-of-mass energy per nucleon–nucleon pair of sNN = 5.02 TeV are presented, including the first measurement of an antialpha transverse-momentum spectrum. Owing to its large mass, the production of (anti)alpha is expected to be sensitive to different particle production models. The production yields and transverse-momentum spectra of nuclei are of particular interest because they provide a stringent test of these models. The averaged antialpha and alpha spectrum is compared to the spectra of lighter particles, by including it into a common blast-wave fit capturing the hydrodynamic-like flow of all particles. This fit is indicating that the (anti)alpha also participates in the collective expansion of the medium created in the collision. A blast-wave fit including only protons, (anti)alpha, and other light nuclei results in a similar flow velocity as the fit that includes all particles. A similar flow velocity, but a significantly larger kinetic freeze-out temperature is obtained when only protons and light nuclei are included in the fit. The coalescence parameter B4 is well described by calculations from a statistical hadronization model but significantly underestimated by calculations assuming nucleus formation via coalescence of nucleons. Similarly, the (anti)alpha-to-proton ratio is well described by the statistical hadronization model. On the other hand, coalescence calculations including approaches with different implementations of the (anti)alpha substructure tend to underestimate the data. © 2024 CERN for the benefit of the ALICE Collaboration

Department/s

  • Particle and nuclear physics

Publishing year

2024

Language

English

Publication/Series

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

Volume

858

Document type

Journal article

Publisher

Elsevier

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0370-2693