The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

joachiha

Joachim Hansen

SMARTHEP PhD student ESR10

joachiha

Systematic study of flow vector fluctuations in sNN =5.02 TeV Pb-Pb collisions

Author

  • S. Acharya
  • S. Basu
  • P. Christiansen
  • J. Hansen
  • K.E. Iversen
  • O. Matonoha
  • R. Nepeivoda
  • A. Ohlson
  • D. Silvermyr
  • J. Staa
  • V. Vislavicius
  • N. Zurlo

Summary, in English

Measurements of the pT-dependent flow vector fluctuations in Pb-Pb collisions at sNN=5.02TeV using azimuthal correlations with the ALICE experiment at the Large Hadron Collider are presented. A four-particle correlation approach [ALICE Collaboration, Phys. Rev. C 107, L051901 (2023)2469-998510.1103/PhysRevC.107.L051901] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the pT-dependent flow vector fluctuations at sNN=5.02TeV with two-particle correlations. Significant pT-dependent fluctuations of the V - 2 flow vector in Pb-Pb collisions are found across different centrality ranges, with the largest fluctuations of up to ∼15% being present in the 5% most central collisions. In parallel, no evidence of significant pT-dependent fluctuations of V - 3 or V - 4 is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than 5σ significance in central collisions. These observations in Pb-Pb collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high pT, which might be biased by pT-dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be reexamined to improve our understanding of initial conditions, quark-gluon plasma properties, and the dynamic evolution of the created system. © 2024 CERN, for the ALICE Collaboration.

Department/s

  • Particle and nuclear physics

Publishing year

2024

Language

English

Publication/Series

Physical Review C

Volume

109

Issue

6

Document type

Journal article

Publisher

American Physical Society

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 2469-9985