The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

profil image

Balazs Konya

Researcher

profil image

Measurements of b-jet tagging efficiency with the ATLAS detector using tt¯ events at √s=13 TeV

Author

  • M Aaboud
  • Torsten Åkesson
  • Simona Bocchetta
  • Eric Corrigan
  • Caterina Doglioni
  • Eva Brottmann Hansen
  • Vincent Hedberg
  • Göran Jarlskog
  • Charles Kalderon
  • Edgar Kellermann
  • Balazs Konya
  • Else Lytken
  • Katja Mankinen
  • Ulf Mjörnmark
  • Ruth Pöttgen
  • Trine Poulsen
  • Oxana Smirnova
  • Oleksandr Viazlo
  • L. Zwalinski

Summary, in English

The efficiency to identify jets containing b-hadrons (b-jets) is measured using a high purity sample of dileptonic top quark-antiquark pairs (tt¯) selected from the 36.1 fb−1 of data collected by the ATLAS detector in 2015 and 2016 from proton-proton collisions produced by the Large Hadron Collider at a centre-of-mass energy s=13 TeV. Two methods are used to extract the efficiency from tt¯ events, a combinatorial likelihood approach and a tag-and-probe method. A boosted decision tree, not using b-tagging information, is used to select events in which two b-jets are present, which reduces the dominant uncertainty in the modelling of the flavour of the jets. The efficiency is extracted for jets in a transverse momentum range from 20 to 300 GeV, with data-to-simulation scale factors calculated by comparing the efficiency measured using collision data to that predicted by the simulation. The two methods give compatible results, and achieve a similar level of precision, measuring data-to-simulation scale factors close to unity with uncertainties ranging from 2% to 12% depending on the jet transverse momentum. © 2018, The Author(s).

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2018

Language

English

Publication/Series

Journal of High Energy Physics

Volume

2018

Issue

8

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Keywords

  • Hadron-Hadron scattering (experiments)

Status

Published

ISBN/ISSN/Other

  • ISSN: 1029-8479