The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

profil image

Balazs Konya

Researcher

profil image

Search for bottom-squark pair production in pp collision events at s =13 TeV with hadronically decaying τ -leptons, b -jets, and missing transverse momentum using the ATLAS detector

Author

  • G Aad
  • Torsten Åkesson
  • Simona Bocchetta
  • Eric Edward Corrigan
  • Caterina Doglioni
  • Jannik Geisen
  • Kristian Gregersen
  • Eva Brottmann Hansen
  • Vincent Hedberg
  • Göran Jarlskog
  • Edgar Kellermann
  • Balazs Konya
  • Else Lytken
  • Katja Mankinen
  • Caterina Marcon
  • Ulf Mjörnmark
  • Geoffrey André Adrien Mullier
  • Ruth Pöttgen
  • Trine Poulsen
  • Eleni Skorda
  • Oxana Smirnova
  • L Zwalinski

Summary, in English

A search for pair production of bottom squarks in events with hadronically decaying τ-leptons, b-tagged jets, and large missing transverse momentum is presented. The analyzed dataset is based on proton-proton collisions at √s=13 TeV delivered by the Large Hadron Collider and recorded by the ATLAS detector from 2015 to 2018, and corresponds to an integrated luminosity of 139 fb−1. The observed data are compatible with the expected Standard Model background. Results are interpreted in a simplified model where each bottom squark is assumed to decay into the second-lightest neutralino ˜χ02 and a bottom quark, with ˜χ02 decaying into a Higgs boson and the lightest neutralino ˜χ01. The search focuses on final states where at least one Higgs boson decays into a pair of hadronically decaying τ-leptons. This allows the acceptance and thus the sensitivity to be significantly improved relative to the previous results at low masses of the ˜χ02, where bottom-squark masses up to 850 GeV are excluded at the 95% confidence level, assuming a mass difference of 130 GeV between ˜χ02 and ˜χ01. Model-independent upper limits are also set on the cross section of processes beyond the Standard Model.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2021

Language

English

Publication/Series

Physical Review D

Volume

104

Issue

3

Document type

Journal article

Publisher

American Physical Society

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 2470-0010